=Pi-L

= OPTIM@EPFL

Curvature and Complexity: Better lower bounds for geodesically convex optimization

Christopher Criscitiello, Nicolas Boumal (EPFL, Institute of Mathematics)

1 Setting: g-convex optimization
min f(x)  (P) .

M is a Riemannian manifold

f is geodesically convex (g-convex) 4
Def: For every geodesic y, the 1D function t & f (y(t)) is convex.

Question: complexity of (P) & dependence on curvature of M?

2 Curvature

K=0 K<O0
Constant curvature: Euclidean space R*  Hyperbolic space H¢
(K =-1)
Volume of ball of radiusr: Vol ~ r® = e 108(r) Vol ~ e?"
Pythagorean thm: s2=(1—e))r? 1 — i r2
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Applications usually have K < 0: Operator scaling, Robust covariance
estimation, Matrix normal models, Intrinsic medians (e.g., for phylogenetics)

3 Complexity: the computational problem
M = H%is a hyperbolic space of curvature K = —1 (simplifying assumption)

f attains a global minimizer x” in a known radius-r geodesic ball
B(Xref, 7)

f is globally g-convex and regular (consider four function classes):
(P1) Lipschitz & Low-dimensional (d fixed) } B N
(P2) Lipschitz |f(x) — f(y)| £ M dist(x,y) f) —f&) s €e-Mr
(P3) Smooth |Vf(x)
(P4) Smooth & strongly g-convex 2
Black-box model: Algorithm can query an oracle at x to get f(x),V f(x)
Worst-case complexity: Least number of oracle queries to find an
e-optimal point x, for all functions in the class.

* For (P2) & (P3): Depends on botheand { ~ 1 + r/|K]|

4 Main results

g-convex Lower bound | Upper bound | Algorithm
setting
(P1) Lipschitz, QC + d) 0(¢d?) Center of gravity
lo-dim (Rusciano’19)
(P2) Lipschitz 1 ¢ Subgradient descent
O+ 22 P (Zhang & Sra’16)
P3) Smooth ~ 1 RNAG-C (Kim &
( Q (( + 7) 0 < ’(/E> Yang’'22 / Martinez-
(Ve Rubio et al.’22)
(P4) Smooth, QT +VK0) 0(,/Tx) RNAG-SC (Kim &
strongly g- Yang'22 / Martinez-
convex Rubio et al.’22)

_Py_,fo(y)| < L dist(x,y) :I_ ) - fx*) <e .ler

*Hamilton & Moitra'21 / C & Boumal’22 Note: k > ¢ and= > ¢
> =

Consequences:

* Provides first lower bounds depending on ¢, k, d

* Curvature terms in all upper bounds are unavoidable.

* "Full” acceleration is impossible for smooth g-convex opt (P3)

But, lower bounds do not match upper bounds! To address this:
* Tight Q ( ) lower bound for subgradient descent (with

Polyak step sizes) for (P2)
* Q({d) lower bound for cutting-planes game, a proxy for (P1)

Lower bound Q(¢) for (P1), (P2), (P3)

Slight modification of hard function in C & Boumal’22
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Key geometric fact: Volume of ball of radius r scales like e "
* Pack B(xpef, ) with exponentially many balls B (zj,g)
* Initially, each z; is a potential value for x*

6 Lower bound Q ( T2e 2) for (P2)

In Euclidean space: f(x) = max;=1__q{(s;€e;, x)},s; € {—1,+1}
Fundamental difficulty: No good notion of linear functions on manifolds.

Totally geodesic submanifolds: S; = {x € M = H%:(g;,log,,(x)) = 0}
* Generalization of affine subspace
Idea: use max of distance to totally geodesic submanifolds:

f(x) = max, {dist(x, $;)},s; € {-1,+1}

7 Lower bound Q ( for (P3)

)

Worst fun o=

Smooth the Lipschitz lower bound with Moreau envelope
(Guzman & Nemirovski'l5):

Fi0) = inf { ) + = dist? ()]

Surprising because no good notion of Fenchel dual on manifolds.

8 Lower bound Q ( ) for subgrad descent (P2)

New worst function in the world (not an extension of a Euc. proof):
: . 1
f(x) = dist(x, x") + i=§f§z{_z {Edlst(x,Li)}

L; are cleverly chosen hyperbolic halfspaces.

2
Key Geometric fact: Pythagorean theorem r? ~ (1 - %) r?

Construction for (6)

Construction for (8)






