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min
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𝑓 𝑥 (P)

ℳ is	a	Riemannian	manifold

𝑓 is	geodesically convex	(g-convex)
Def:	For	every	geodesic	𝛾,	the	1D	function	𝑡 ↦ 𝑓 𝛾 𝑡 is	convex.

Question:	complexity of	(P)	&	dependence	on	curvature of	ℳ?

Applications	usually	have	K ≤ 0:	Operator	scaling,	Robust	covariance	
estimation,	Matrix	normal	models,	Intrinsic	medians	(e.g.,	for	phylogenetics)

3	Complexity:	the	computational	problem
ℳ = ℍ! is	a	hyperbolic	space	of	curvature	𝐾 = −1 (simplifying	assumption)

𝑓 attains	a global	minimizer	𝑥∗ in	a	known	radius-𝑟 geodesic	ball	
𝐵(𝑥+,-, 𝑟)

𝑓 is	globally	g-convex	and	regular	(consider	four	function	classes):
(P1)	Lipschitz	 &	Low-dimensional	(𝑑 fixed)
(P2)	Lipschitz 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝑀 dist 𝑥, 𝑦
(P3)	Smooth	 ∇𝑓 𝑥 − 𝑃!→#∇𝑓(𝑦) ≤ 𝐿 dist 𝑥, 𝑦
(P4)	Smooth	&	strongly	g-convex

Black-box	model:	Algorithm	can	query	an	oracle	at	𝑥 to	get	𝑓(𝑥), ∇ 𝑓(𝑥)
Worst-case	complexity:	Least	number	of	oracle	queries	to	find	an													
𝜖-optimal	point	𝑥, for	all	functions	in	the	class.
• For	(P2)	&	(P3):	Depends	on	both	𝜖 and	𝜁 ∼ 1 + 𝑟 𝐾

𝑓 𝑥 − 𝑓 𝑥∗ ≤ 𝜖 ⋅ 𝑀𝑟

𝑓 𝑥 − 𝑓 𝑥∗ ≤ 𝜖 ⋅
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Lower	bound Upper	bound Algorithm

(P1)	Lipschitz,	
lo-dim

MΩ 𝜁 + d 𝑂 𝜁𝑑& Center	of	gravity	
(Rusciano’19)

(P2)	Lipschitz MΩ 𝜁 +
1

𝜁&𝜖& 𝑂
𝜁
𝜖&

Subgradient	descent	
(Zhang	&	Sra’16)

(P3)	Smooth MΩ 𝜁 +
1
𝜁 𝜖

Q𝑂 R𝜁 𝜖
RNAG-C	(Kim	&	
Yang’22	/	Martinez-
Rubio	et	al.’22)

(P4)	Smooth,	
strongly	g-
convex

MΩ 𝜁∗ + 𝜅 Q𝑂 𝜁𝜅 RNAG-SC	(Kim	&	
Yang’22	/	Martinez-
Rubio	et	al.’22)

Note:	𝜅 ≥ 𝜁	and	.
/
≥ 𝜁*Hamilton	&	Moitra’21	/	C	&	Boumal’22

Consequences:
• Provides	first	lower bounds depending on 𝜖, 𝜅, 𝑑
• Curvature terms in all upper bounds are unavoidable.
• ”Full”	acceleration	is	impossible	for	smooth	g-convex	opt	(P3)

But, lower bounds do not match upper bounds!		To	address	this:
• Tight 𝛀 0

/! 	lower	bound	for	subgradient	descent	(with	
Polyak	step	sizes)	for	(P2)

• M𝛀 𝜁𝑑 lower	bound	for	cutting-planes	game,	a	proxy	for	(P1)

Slight	modification	of	hard	function	in	C	&	Boumal’22

Key	geometric	fact:	Volume	of	ball	of	radius	r	scales	like	𝑒!%

• Pack 𝐵 𝑥+,-, 𝑟 with	exponentially	many	balls	𝐵 𝑧1,
%
2

• Initially,	each	𝑧1 is	a	potential	value	for	𝑥∗
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In Euclidean space:	𝑓 𝑥 = max34.,…,! ⟨𝑠3𝑒3 , 𝑥⟩ , 𝑠3 ∈ {−1,+1}

Fundamental	difficulty:	No	good	notion	of	linear	functions	on	manifolds.

Totally	geodesic	submanifolds:	𝑆$ = 𝑥 ∈ ℳ = ℍ%: 𝑔$ , log!) 𝑥 = 0
• Generalization of affine subspace
Idea:	use	max	of	distance	to	totally	geodesic	submanifolds:	

𝑓 𝑥 = max
34.,…,!

dist 𝑥, 𝑆3
7) , 𝑠3 ∈ {−1,+1}
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Worst	function	in	world:	𝑓 𝑥 = 𝑥 "
% − 2𝑥(") + ∑, 𝑥(,) − 𝑥(,#")

% + 𝑥 -
%

Smooth	the	Lipschitz	lower	bound	with	Moreau	envelope	
(Guzman	&	Nemirovski’15):

𝑓8 𝑥 = inf
9∈ℳ

𝑓 𝑦 +
1
2𝜆
dist& 𝑥, 𝑦

Surprising	because	no	good	notion	of	Fenchel dual	on	manifolds.

New worst	function	in	the	world	(not an	extension	of	a	Euc.	proof):

𝑓 𝑥 = dist 𝑥, 𝑥∗ + max
34:,…,!;&

1
4𝜖
dist 𝑥, 𝐿3

𝐿3 are	cleverly	chosen	hyperbolic	halfspaces.
Key Geometric fact: Pythagorean theorem 𝑟.& ≈ 1 − /!
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