EPFL

Curvature and Complexity: Better lower bounds for geodesically convex optimization

Christopher Criscitiello, Nicolas Boumal (EPFL, Institute of Mathematics)

1 Setting: g-convex optimization

 $\min_{x \in \mathcal{M}} f(x)$

 $\mathcal M$ is a Riemannian manifold

f is *geodesically* convex (g-convex)

(P)

Def: For every geodesic γ , the 1D function $t \mapsto f(\gamma(t))$ is convex.

Question: complexity of **(P)** & dependence on curvature of \mathcal{M} ?

2 Curvature K = 0*K* < 0 Constant curvature: Euclidean space \mathbb{R}^d Hyperbolic space \mathbb{H}^d (K = -1)*Volume of ball of radius r:* Vol ~ $r^d = e^{d \log(r)}$ Vol ~ e^{dr} $s^2 = (1 - \epsilon^2)r^2$ $s^2 \approx \left(1 - \frac{\epsilon^2}{\zeta}\right) r^2$ *Pythagorean thm:* $\zeta = \frac{r\sqrt{|K|}}{\tanh(r\sqrt{|K|})} \sim 1 + r\sqrt{|K|}$ $\epsilon = \cos(\theta)$

Applications usually have $K \leq 0$: *Operator scaling, Robust covariance* estimation, Matrix normal models, Intrinsic medians (e.g., for phylogenetics)

3 Complexity: the computational problem

 $\mathcal{M} = \mathbb{H}^d$ is a hyperbolic space of curvature K = -1 (simplifying assumption)

f attains a global minimizer x^* in a known radius-r geodesic ball $B(x_{\rm ref}, r)$

f is globally g-convex and regular (consider four function classes):

(P1) Lipschitz & Low-dimensional (*d* fixed) $f(x) - f(x^*) \le \epsilon \cdot Mr$ (P2) Lipschitz $|f(x) - f(y)| \le M \operatorname{dist}(x, y)$ $\int f(x) - f(x^*) \le \epsilon \cdot \frac{1}{2}Lr^2$ (P3) Smooth $|\nabla f(x) - P_{y \to x} \nabla f(y)| \le L \operatorname{dist}(x, y)$ (P4) Smooth & strongly g-convex

Black-box model: Algorithm can query an oracle at x to get f(x), $\nabla f(x)$ Worst-case complexity: Least number of oracle queries to find an ϵ -optimal point *x*, for all functions in the class.

• For (P2) & (P3): Depends on both ϵ and $\zeta \sim 1 + r\sqrt{|K|}$

4 Main results

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo-dim	$\widetilde{\Omega}(\zeta + d)$	$O(\zeta d^2)$	Center of gravity (Rusciano'19)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta^2 \epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{O}\left(\sqrt{\zeta}/\epsilon\right)$	RNAG-C (Kim & Yang'22 / Martinez- Rubio et al.'22)
(P4) Smooth, strongly g- convex	$\widetilde{\Omega}(\zeta^* + \sqrt{\kappa})$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez- Rubio et al.'22)
*Hamilton & Moitra'21 / C & Boumal'22 Note: $\kappa \ge \zeta$ and $\frac{1}{2} \ge \zeta$			

Consequences:

- Provides first lower bounds depending on ϵ, κ, d
- Curvature terms in all upper bounds are unavoidable.
- "Full" acceleration is impossible for smooth g-convex opt (P3)

But, lower bounds do not match upper bounds! To address this:

• Tight $\Omega\left(\frac{\zeta}{z^2}\right)$ lower bound for subgradient descent (with

Polyak step sizes) for (P2)

• $\widetilde{\Omega}(\zeta d)$ lower bound for cutting-planes game, a proxy for (P1)

5 Lower bound $\widetilde{\Omega}(\zeta)$ for (P1), (P2), (P3)

Slight modification of hard function in C & Boumal'22

Key geometric fact: Volume of ball of radius r scales like e^{dr}

- Pack $B(x_{ref}, r)$ with exponentially many balls $B(z_i, \frac{r}{r})$
- Initially, each z_i is a potential value for x^*

6 Lower bou

Fundamental difficulty: No good notion of linear functions on manifolds.

Totally geodesic submanifolds: $S_i = \{x \in \mathcal{M} = \mathbb{H}^d : \langle g_i, \log_{v_i}(x) \rangle = 0\}$ • Generalization of affine subspace Idea: use max of distance to totally geodesic submanifolds: (11. (-5:))

f(x)

7 Lower bo

Smooth the Lipschitz lower bound with Moreau envelope (Guzman & Nemirovski'15):

fλ

Surprising because no good notion of Fenchel dual on manifolds.

8 Lower bound $\Omega\left(\frac{\zeta}{c^2}\right)$ for subgrad descent (P2)

New worst function in the world (not an extension of a Euc. proof):

f(x)

Construction for (8)

 $B(x_{\rm ref}, r)$

OPTIM@EPFL

and
$$\Omega\left(\frac{1}{\zeta^2\epsilon^2}\right)$$
 for (P2)

In Euclidean space: $f(x) = \max_{i=1,...,d} \{ (s_i e_i, x) \}, s_i \in \{-1, +1\}$

$$f(x) = \max_{i=1,\dots,d} \{ \operatorname{dist}(x, S_i^{s_i}) \}, s_i \in \{-1, +1\}$$

and
$$\widetilde{\Omega}\left(\frac{1}{\zeta\sqrt{\epsilon}}\right)$$
 for (P3)

Worst function in world: $f(x) = x_{(1)}^2 - 2x_{(1)} + \sum_i (x_{(i)} - x_{(i+1)})^2 + x_{(k)}^2$

$$I(x) = \inf_{y \in \mathcal{M}} \left\{ f(y) + \frac{1}{2\lambda} \operatorname{dist}^2(x, y) \right\}$$

$$) = \operatorname{dist}(x, x^*) + \max_{i=0,\dots,d-2} \left\{ \frac{1}{4\epsilon} \operatorname{dist}(x, L_i) \right\}$$

L_i are cleverly chosen hyperbolic halfspaces.

Key Geometric fact: Pythagorean theorem $r_1^2 \approx \left(1 - \frac{\epsilon^2}{r}\right)r^2$

